El Enfoque Social de las Ciencias y la Tecnología: Implicaciones en la Educación Superior
José Alfredo Muñiz Pionce
Universidad Estatal del Sur de Manabí
https://orcid.org/0000-0002-6946-1572
Ivanova Claribel Orejuela Mendoza
Universidad Estatal del Sur de Manabí
https://orcid.org/0009-0004-5266-0120
Justin Magdalena Eguez Morales
Universidad Estatal del Sur de Manabí
https://orcid.org/0009-0006-6629-5157
Diego Sornoza-Parrales
Universidad Estatal del Sur de Manabí
https://orcid.org/0000-0001-9319-9298
DOI: https://doi.org/10.55204/trj.v3i1.e26
Palabras clave: desarrollo social; perspectiva crítica; currículo; interdisciplinariedad; responsabilidad ética
Resumen
Esta revisión sistemática de literatura explora la intersección entre las ciencias y la tecnología y su impacto social, especialmente en el contexto de la educación superior. El artículo inicia destacando la creciente importancia de las ciencias y la tecnología en la sociedad contemporánea, señalando cómo han transformado diversos aspectos de la vida cotidiana y han emergido como campos clave en la educación superior. El núcleo del artículo se centra en cómo las ciencias y la tecnología no solo son áreas de conocimiento en sí mismas, sino también cómo influyen en el desarrollo social y cultural. Se subraya la importancia de integrar una perspectiva crítica y reflexiva en los currículos, incentivando a los estudiantes a considerar las consecuencias de largo alcance de su trabajo en la sociedad. Se discuten ejemplos concretos donde la integración de un enfoque social ha enriquecido el aprendizaje, y casos que ilustran las repercusiones sociales de la tecnología y la ciencia. Finalmente, el artículo concluye enfatizando que la incorporación de un enfoque social en la enseñanza de las ciencias y la tecnología en la educación superior no es solo una necesidad educativa, sino también una responsabilidad ética. Se propone que tal enfoque prepara mejor a los estudiantes para ser ciudadanos conscientes, capaces de contribuir positivamente a un mundo cada vez más interconectado y tecnológicamente avanzado.
Descargas
Citas
Abbonizio, J. and Ho, S. (2020). Students’ perceptions of interdisciplinary coursework: an australian case study of the master of environment and sustainability. Sustainability, 12(21), 8898. https://doi.org/10.3390/su12218898
Anderson, M. and Giordano, J. (2013). Aequilibrium prudentis: on the necessity for ethics and policy studies in the scientific and technological education of medical professionals. BMC Medical Education, 13(1). https://doi.org/10.1186/1472-6920-13-58
Arees, Z. (2022). The social impact of artificial intelligence., 834-847. https://doi.org/10.4018/978-1-7998-9220-5.ch048
Eijck, M. and Claxton, N. (2008). Rethinking the notion of technology in education: techno‐epistemology as a feature inherent to human praxis. Science Education, 93(2), 218-232. https://doi.org/10.1002/sce.20308
Evis, L. (2021). A critical appraisal of interdisciplinary research and education in british higher education institutions: a path forward?. Arts and Humanities in Higher Education, 21(2), 119-138. https://doi.org/10.1177/14740222211026251
Fadhilah, A. and Haryani, S. (2021). Development of acid-base online science literacy test instruments. Jurnal Pendidikan Sains (Jps), 9(2), 152. https://doi.org/10.26714/jps.9.2.2021.152-160
Hersh, W. R., Gorman, P. N., Biagioli, F. E., Mohan, V., Gold, J. A., & Mejicano, G. C. (2014). Beyond information retrieval and electronic health record use: competencies in clinical informatics for medical education. Advances in medical education and practice, 5, 205–212. https://doi.org/10.2147/AMEP.S63905
International Renewable Energy Agency (IRENA). (2020). Renewable Energy and Jobs – Annual Review 2020. IRENA, Abu Dhabi. https://www.irena.org/publications/2020/Sep/Renewable-Energy-and-Jobs-Annual-Review-2020
Ioannidou, O. and Erduran, S. (2022). Policymakers’ views of future-oriented skills in science education. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.910128
Kelley, T. and Knowles, J. (2016). A conceptual framework for integrated stem education. International Journal of Stem Education, 3(1). https://doi.org/10.1186/s40594-016-0046-z
Kipriyanova, M. and Smolnikov, S. (2021). Specialists training in a technical university in the transition to a robotic society. SHS Web of Conferences, 121, 03005. https://doi.org/10.1051/shsconf/202112103005
Klein, H. and Kleinman, D. (2002). The social construction of technology: structural considerations. Science Technology & Human Values, 27(1), 28-52. https://doi.org/10.1177/016224390202700102
Liston, M., Morrin, A., Furlong, T., & Griffin, L. (2022). Integrating data science and the internet of things into science, technology, engineering, arts, and mathematics education through the use of new and emerging technologies. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.757866
McClune, B. and Jarman, R. (2010). From aspiration to action: a learning intentions model to promote critical engagement with science in the print-based media. Research in Science Education, 41(5), 691-710. https://doi.org/10.1007/s11165-010-9186-1
Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature climate change, 5(4), 329–332. https://doi.org/10.1038/nclimate2564
Pedretti, E. (1999). Decision making and sts education: exploring scientific knowledge and social responsibility in schools and science centers through an issues‐based approach. School Science and Mathematics, 99(4), 174-181. https://doi.org/10.1111/j.1949-8594.1999.tb17471.x
Rahmawati, M., Ruslan, A., & Bandarsyah, D. (2021). The era of society 5.0 as the unification of humans and technology: a literature review on materialism and existentialism. Jurnal Sosiologi Dialektika, 16(2), 151. https://doi.org/10.20473/jsd.v16i2.2021.151-162
Reyers, B., Roux, D., Cowling, R., Ginsburg, A., Nel, J., & Farrell, P. (2010). Conservation planning as a transdisciplinary process. Conservation Biology, 24(4), 957-965. https://doi.org/10.1111/j.1523-1739.2010.01497.x
Rudolph, J. and Horibe, S. (2015). What do we mean by science education for civic engagement?. Journal of Research in Science Teaching, 53(6), 805-820. https://doi.org/10.1002/tea.21303
Seidl, R., Brand, F., Stauffacher, M., Krütli, P., Le, Q., Spörri, A., … & Scholz, R. (2013). Science with society in the anthropocene. Ambio, 42(1), 5-12. https://doi.org/10.1007/s13280-012-0363-5
Tileubergenov, Y., Pelevin, S., Seitkasymovich, S., & Vasiliev, A. (2021). Digitalization of post-industrial society in the context of social development. Laplage Em Revista, 7(3B), 195-201. https://doi.org/10.24115/s2446-6220202173b1535p.195-201
Twenge, J. M., & Campbell, W. K. (2018). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 12, 271–283. https://doi.org/10.1016/j.pmedr.2018.10.003
Waight, N., Kayumova, S., Tripp, J., & Achilova, F. (2022). Towards equitable, social justice criticality: re-constructing the “black” box and making it transparent for the future of science and technology in science education. Science & Education, 31(6), 1493-1515. https://doi.org/10.1007/s11191-022-00328-0
Wang, X., Feng, X., & Guo, K. (2022). Research hotspots and prospects of ethics education of science and technology in china based on bibliometrics. Library Hi Tech, 41(2), 454-473. https://doi.org/10.1108/lht-06-2022-0298
Wyborn, C., Datta, A., Montana, J., Ryan, M., Leith, P., Chaffin, B., … & Kerkhoff, L. (2019). Co-producing sustainability: reordering the governance of science, policy, and practice. Annual Review of Environment and Resources, 44(1), 319-346. https://doi.org/10.1146/annurev-environ-101718-033103
Zimbardi, K., Bugarcic, A., Colthorpe, K., Good, J., & Lluka, L. (2013). A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students. Ajp Advances in Physiology Education, 37(4), 303-315. https://doi.org/10.1152/advan.00082.2012.