Technology Rain Journal ISSN: 2953-464X (2023)
15
https://technologyrain.com.ar/
Higham, N. J. (1987). Computing Real Square Roots of a Real Matrix. Linear Algebra and Its
Applications, 88–89, 405–430. https://doi.org/10.1016/0024-3795(87)90118-2
Higham, N. J. (1997). Stable iterations for the matrix square root. Numerical Algorithms, 15, 227–
242. https://doi.org/10.1023/A:1019150005407
Higham, N. J. (2008). Functions of Matrices. Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9780898717778
Higham, N. J., & Lin, L. (2011). On pth roots of stochastic matrices. Linear Algebra and Its
Applications, 435(3), 448–463. https://doi.org/10.1016/j.laa.2010.04.007
Horn, R. A., & Johnson, C. R. (2012). Matrix Analysis (2nd ed.). Cambridge University Press.
https://doi.org/DOI: 10.1017/CBO9781139020411
Horn, R., & Johnson, C. (1985). Eigenvalues, eigenvectors, and similarity. In Matrix Analysis (pp.
33–64). Cambridge University Press. https://doi.org/10.1017/CBO9780511810817.003
Lin, L., & Liu, Z.-Y. (2001). On the Square Root of an H-matrix with Positive Diagonal Elements.
Annals of Operations Research, 103, 339–350. https://doi.org/10.1023/A:1012931928589
Nazari, A., Fereydooni, H., & Bayat, M. (2013). A manual approach for calculating the root of
square matrix of dimension ≤ 3. Mathematical Sciences, 7(44).
http://www.iaumath.com/content/7/1/xx
Rubiales Camino, E. (2005). Raíz cuadrada de una matriz. Boletín de la Sociedad Puig Adam de
Profesores de Matemáticas, 71, 31–46. https://www.ucm.es/data/cont/media/www/pag-
89521/Boletin%2071%20de%20Soc%20PUIG%20ADAM.pdf
Sherif, N. (1991). On the Computation of a Matrix Inverse Square Root. Computing, 46, 295–305.
https://doi.org/10.1007/BF02257775
van Rensburg, D. B. J., van Straaten, M., Theron, F., & Trunk, C. (2020). Square roots of H-
nonnegative matrices. http://arxiv.org/abs/2010.16238